Team Asteroid: EV Charging Stations Map

Vaishnavi Manikonda, Nathan Leverence, Michael Hangsterfer, Anthony Alagna

Abstract

Forbes, Ernst & Young, Wired agree on one thing: data is the new gold. The need for data
has spurred innovations in data engineering (i.e. Snowflake, Kafka, Airflow, etc.) working
to get datainto a usable format in the least expensive way possible. We wanted to create a
project that leveraged common data engineering tools in order to build a useful web
application. With this idea we decided to use a common data engineering stack, AWS S3,
RDS, Lambda, EventBridge, and StepFunctions to display how you can inexpensively get
datainto a usable format to power a web application. This displays how clean data powers
not only data analysis but other use cases as well. The project pulls from the National
Renewable Energy Laboratory API for electric vehicle fuel stations. We then use a front
end to prompt the user for a zip code and display the locations and addresses of charging
stations located in the zip code. This is done with a web application built in React which
leverages Google Maps API.

Architecture

Two lambda functions, APItoS3 and S3toRDS are run using StepFunctions which is
triggered by EventBridge Scheduler every 24 hours. API1toS3 calls and moves the data into
S3. Then S3toRDS grabs the data from the S3 buckets, changes it to tabular formatting
using Python’s pandas library and then moves it into MySQL using SQLAIchemy. No
version control is used since we only want the most up to date data from the API. The EC2
instance uses nginx for the routing to run the web application using data from the MySQL
table. Node.js is used for the backend and API of the web application.

AWS Lambda S3 Bucket EC2 @Vl&uall I.:.*aracllig.rn

_

Government
Managed API = -




Features

In this section, we describe the features which we used to build our project which has the
ability to be used as a pipeline, web application deployment service, or both as we have
done with our application.

1. The data pipeline component flows through the following AWS Services:
EventBridge — Step Functions — Lambda Function — S3 — Lamba Function —
MySQL. This flow can be leveraged for a variety of other use cases. For instance, if
we wanted to scale our application to not only show customers EV charging station
locations but also other information about the surrounding area, we can use the
same steps for other data sources. Our code has the potential to ingest CSV or
JSON data. This can also expand to other data types if needed. S3is used as a
dumping ground for all data in its raw format and provides cheap storage should we
need it. Finally, the datais cleaned using Python and placed into a MySQL database.

2. The most important piece of this portion of the project is the hosting in the cloud.
Once the database is in RDS, the web application can make use of the data in the
EC2 instance in a variety of ways, from data analysis, to creating APls, to targeted
advertising, trend prediction and so much more. Hosting a web application on EC2
allows our application to be more failure resistant, cheaper through auto-scaling,
and have complete control over instances and who accesses them. The web
application part of the code can take a large database of electric vehicle charger
locations and return the closest locations through zip code, and can easily be
updated to provide even more targeted data through more endpoints, change the
data source to a completely different project, or display the data in a different
manner.

3. Inorder to fully make use of the tools described above, a user would need to set up
a VPC with access to the RDS from the EC2. Once this is complete, an individual
can implement this type of service for their use case.

4. This project can be used with an API to get current, up-to-date data that refreshes
daily and only returns the desired fields. Here, we use an API of Electric Vehicle
location data to create a web application that displays the closest EV locations to
the user.

How it Works

1. Backend
a. APItoS3: The first step in order to begin the project is to create two lambda
functions APItoS3 and S3toRDS. These functions leverage the classes
Store.py, Ingest.py, and Process.py in order to run. APItoS3 uses an APl key
from the National Renewable Energy Laboratory and sets parameters to
bring in EV charging stations in the USA. A main piece in making this work is



using boto3 to make the connection to the S3 bucket after the API call has
completed. Our function needed 1024 MB of memory in order to complete
both of these calls because of the large amount of data (~70,000 rows with
~80 columns) being brought in. We also set the timeout to 2 % minutes. We
also used Python 3.10 as the runtime for the functions as well as the layers.

b. S3toRDS leverages boto3 as well as pandas and SQLAIchemy in order to
take the data, clean it, and move it to a MySQL database. We included these
dependencies as Lambda Layers. We also only included the needed nine
columns for the web application to run effectively when moving the data to
the MySQL database. These are the columns involving latitude, longitude,
and address. We decided to overwrite the database as opposed to using
version control because we only want the data provided by the most recent
API call.

c. The actual code for these functions can be accessed via the public GitHub
repo provided at the end of the post.

2. Frontend
a. EC2instance hosts web application
i. AnEC2instance is created for the web application. We used an
Ubuntu 20.04 instance with t2.micro.

ii.  Theclient portion of the React app was built and pushed to the
private repository, and was modified to run from starting the
backend server with express

iii. pm2, npm, nginx used
1. Pm2,a Production Process Manager with a built-in Load
Balancer, is used to keep the application running indefinitely.
We use it to start our updated backend.
2. Npmisused to install react dependencies
3. Nginxis used as a proxy server that handles the routing
iv. ~ VPC needed between RDS and EC2 instance so that the application
can query data from the database
b. React, Node.js, and express used for web application
i. Backend
1. The Node.js and express backend uses express to serve the
static build files.
2. Anendpoint queries the database with a SQL query using a
mysql connection, taking a zip code as a parameter.
ii.  Frontend/Client in typescript



1. When auser enters a zipcode into the input bar and submits,
the event is handled and a function that fetches from the
endpoint using the zipcode as a parameter is called.

a. The URL for the fetch changes depending on the
production environment

2. The Google maps api is given the formatted values from the
list of data returned and then we create the markers, format
and concatenate the data for the info window that shows up
when the marker is clicked, create a link that takes the user to
the same location on Google Maps, and center the map
around the list of EV charger locations.

Running the React App locally

1. Once you have the database detailed above, check to make sure you can access it
from MySQLWorkbench. You should have over 60 thousand records. You will need
this database for the React app to run.

SCHEMAS
Q

mE FFA @ Don't Limit
SELECT * FROM evloco.CarData;|
v evloco
\-g Tables
+ @ CarData
> g Columns
I Indexes

Foreign Keys
o 100% & 301

> g Triggers
> [ tester

> [ TestTable

@ Views

I Stored Procedures

Object Info
Table:

Columns:
latitude

longitude
city
intersection_directions
plus4

state

street_address

zip

Result Grid [l Filter Rows:  Q

latitude longitude city intersection_directions

34.2483191527193 |-118.3879713743439 [Sun Valley
[sG76%02_[-i6096065 LongBoach [ |
T S
[GEo60e0T_[i6227605 LosAngeles [ |
[s#0967r7[itea6e081 Lo Angoles [ |
Cr—
[o£o397%6 [i6236085 [LosAngles [ |
52 80547
[sizoteesliiedeesri oopuveda [ |
T A L |
[straree —[iterariii [pasadora [ |
[ 15758 |io 1eo065 pasadora [ |
[Shidsts [ii6.150155 [Pasadora [ |
A 7 A Y |
[Sa767 —[te82 —[Long Beach [ ]|
[oazs67162|tossiose  Nodvidge [ |
ko2 [irres oo [ |
2 O [ I |
T - [ |
T 1 S T T —
[So69005_[-o7.68089 Saoramorio [ |
T 7 S Y |
34.010021 -118.49583 Santa Mon.
CarData 3

Action Output

Time Action

¥ 3 20113:55 SELECT * FROM evloco.CarData

Export: B®  Fetch rows:

plus4 state street_address zip  country

CA 11797 Truesdale St 91352 |US
[CA_[1201 S Figueroa st_[s00ts |
g

1 World Way
9301 Tampa Ave

00 E Esplanade Dr
/00 E Tahquitz Cany.

Lindbergh Dr

s
[ [GA 5225 boneld Dovga

CA 200 Santa Monica Pier 90405 |US
® Read Only

Response Duration / Fetch Time

68446 row(s) returned 0.060 sec / 0.660 sec

2. The React app can be downloaded and run on your local machine by creating a
terminal for the client and backend folder. Navigate to the server.js file in the
backend folder and update the mysql connection variable with the ip address of the
server running mysql, as well as the username, password, and name of the
database. Cd into the respective folders in two separate terminals, run npm install,
and then npm run start for both of them. Get a Google Maps api key and putitina

.env file.


https://developers.google.com/maps/documentation/javascript/get-api-key

3. When the React app starts, you will see a search bar and submit button, and when
you enter and submit a zip code, a map will show up and be populated with the EV
charging station closest to you.

C © localhost:3000

Get the locations of EV charging stations near you

B
PN PINES wesT T
. MILWAUKEE .
a Map  Satellite RIDGEFIELD L
- srararnld Butler )
IMPERIAL Estc
NDUSTRIAL PARK ESTATES
iotah C Whol I pl CAPITOL
HARTRIDGE ostcoWholesale Sharon Lynne Wilson @ Hartung Park HEIGHTS »
Adventure Rgck° Center for the Arts e, - 3 BALT! - (0
z STILLMEADOW Village'of | capiolor GARDEN ACRES s
E N ke FIVE FIECDS Whole Foods Mavke19 0
! & x @
3 ¥ MTMARY, ENDERIS PARK L
£ o " @ *
EV Charger #2 i 9
% Buena Vista Pe 9 baviay
Naga:Wauk
ield agapa aukee: Springs\Water Park L 19555 West Blue Mound Road, Brookfield, Wi, 53045 u N/
N\ fOAK SPRINGS y Zone Milwauke (]
T . (Waukeshe View on Google Maps
@ | — — ELMHURST Wauwatosa
FARFIELD  DOVER BAY ROLLING RIDGE Waukesha 9 Miller: The Brewery
e Moraine PEBBLE VALLEY 9 gOU"‘Y ” Brookfield Square  EIM Grove MI
irport g
teForest WoLLNG R (O] Milwaukee County. Zoce ® 1IW.
-apham RIDGE SOUTH Y- MENOMONEE
2ak Unit L1} & VALLEY'
Woodman's Food Markete American Family Field
WESTBROOKE KIRSEYS WALKER'S POINT
The Legend at Sendik's Food Market OAKLAND GARVENDALE | \
Brandybrook: Retzer/Nature ~ srooksHiRe YElGHTS ® @) WestAllis s e
Center N Y Waukesha Greenfield Milwaukee MITCHELL STREET
Wales KAME TERRACES Park
(ENESEEIEARMS) WOODRIDGE Stigler Nature Preserveo PARKLAND ot
g i GREEN & El|Rey Family Market . SAYToNPARKL | YIEEASE
SPRINGBROOK 9
The Legend at SOUTHGATE
MerrillHills SUNSET HEIGHTS jiinogkaRark SUCLIDEARKS
oepoT HiLL New Bl vexmamn oreee Zir| |
£ HoRaE ovetoox Fox River Park WEATHERSTONE
WILSON PARK
Genesee Depot Fox River REGAL MANORS o
Chiistian Chrch Greenfield @ L
Google o

THE(GATEWAY
Terms.

Try it Yourself

Below you will find a link to our public github repo which can be used to download our
code as well as instructions with the best way to leverage the code to create a similar
application on your own!

A user can adjust the code to run on their local machine quite easily by making use of an

.env file. However, since this is for a Cloud Computing course, we will focus on how to use
the code to operate on AWS.

1. Download Code from GitHub repo and/or clone it to also make sure you can run
the React app.

2. Create API keys for both for the National Renewable Energy Laboratory
(https://developer.nrel.gov/signup/) as well as Google Maps API.

3. Create Access Keys and Secret keys for AWS account in order to use boto3 and
access S3 buckets

4. Create S3 buckets and MySQL database by chosen names (our code points to the
same S3 bucket object each time).

5. Create Lambda functions and put in Environment variables as described in the
code for each lambda function.

6. Addin Lambda Layers via the zip files included in the GitHub repo.


https://developer.nrel.gov/signup/

7. Create Access Keys for the EC2 instance.

8. Update the environment variables in backend/server.js in order to connect to the
MySQL database.

9. Create a.env file with your Google Maps API key.

10.Run npm run build in the client folder.

11.Push to your updated version of the git repository.

12.Create an EC2 instance in the same VPC as MySQL database and connect the
instance to the database.

13.Install nginx, pm2, and node.js. Make sure you can see the nginx web page when
you are at your instance’s ipv4 address.

14.Clone your updated git repository into the instance.

15.Update the .conf file. Check to make sure the syntax is valid.

16.Use pm2 to start the server.js file. Check the logs using pm2 and make sure you can
see the log saying that the port is running.

17.Install React code onto EC2 instance and update environment variables in order to
connect to the MySQL database.

Link to public GitHub repo: https://github.com/mhangsterfer24/Team-Asteroid


https://github.com/mhangsterfer24/Team-Asteroid

