
TeamAsteroid: EV Charging StationsMap

VaishnaviManikonda, Nathan Leverence, Michael Hangsterfer, Anthony Alagna

Abstract

Forbes, Ernst & Young,Wired agree on one thing: data is the new gold. The need for data

has spurred innovations in data engineering (i.e. Snowflake, Kafka, Airflow, etc.) working

to get data into a usable format in the least expensive way possible.Wewanted to create a

project that leveraged common data engineering tools in order to build a useful web

application.With this idea we decided to use a common data engineering stack, AWS S3,

RDS, Lambda, EventBridge, and StepFunctions to display how you can inexpensively get

data into a usable format to power a web application. This displays how clean data powers

not only data analysis but other use cases as well. The project pulls from the National

Renewable Energy Laboratory API for electric vehicle fuel stations.We then use a front

end to prompt the user for a zip code and display the locations and addresses of charging

stations located in the zip code. This is donewith a web application built in React which

leverages GoogleMaps API.

Architecture

Two lambda functions, APItoS3 and S3toRDS are run using StepFunctions which is

triggered by EventBridge Scheduler every 24 hours. APItoS3 calls andmoves the data into

S3. Then S3toRDS grabs the data from the S3 buckets, changes it to tabular formatting

using Python’s pandas library and thenmoves it intoMySQL using SQLAlchemy. No

version control is used since we only want themost up to date data from the API. The EC2

instance uses nginx for the routing to run the web application using data from theMySQL

table. Node.js is used for the backend and API of the web application.



Features

In this section, we describe the features which we used to build our project which has the

ability to be used as a pipeline, web application deployment service, or both as we have

donewith our application.

1. The data pipeline component flows through the following AWS Services:

EventBridge→ Step Functions→ Lambda Function→ S3→ Lamba Function→
MySQL. This flow can be leveraged for a variety of other use cases. For instance, if

wewanted to scale our application to not only show customers EV charging station

locations but also other information about the surrounding area, we can use the

same steps for other data sources. Our code has the potential to ingest CSV or

JSON data. This can also expand to other data types if needed. S3 is used as a

dumping ground for all data in its raw format and provides cheap storage should we

need it. Finally, the data is cleaned using Python and placed into aMySQL database.

2. Themost important piece of this portion of the project is the hosting in the cloud.

Once the database is in RDS, the web application canmake use of the data in the

EC2 instance in a variety of ways, from data analysis, to creating APIs, to targeted

advertising, trend prediction and somuchmore. Hosting a web application on EC2

allows our application to bemore failure resistant, cheaper through auto-scaling,

and have complete control over instances andwho accesses them. Theweb

application part of the code can take a large database of electric vehicle charger

locations and return the closest locations through zip code, and can easily be

updated to provide evenmore targeted data throughmore endpoints, change the

data source to a completely different project, or display the data in a different

manner.

3. In order to fully make use of the tools described above, a user would need to set up

a VPCwith access to the RDS from the EC2. Once this is complete, an individual

can implement this type of service for their use case.

4. This project can be usedwith an API to get current, up-to-date data that refreshes

daily and only returns the desired fields. Here, we use an API of Electric Vehicle

location data to create a web application that displays the closest EV locations to

the user.

How itWorks

1. Backend

a. APItoS3: The first step in order to begin the project is to create two lambda

functions APItoS3 and S3toRDS. These functions leverage the classes

Store.py, Ingest.py, and Process.py in order to run. APItoS3 uses an API key

from the National Renewable Energy Laboratory and sets parameters to

bring in EV charging stations in the USA. Amain piece in making this work is



using boto3 tomake the connection to the S3 bucket after the API call has

completed. Our function needed 1024MB ofmemory in order to complete

both of these calls because of the large amount of data (~70,000 rowswith

~80 columns) being brought in.We also set the timeout to 2 ½minutes.We

also used Python 3.10 as the runtime for the functions as well as the layers.

b. S3toRDS leverages boto3 as well as pandas and SQLAlchemy in order to
take the data, clean it, andmove it to aMySQL database.We included these

dependencies as Lambda Layers.We also only included the needed nine

columns for the web application to run effectively whenmoving the data to

theMySQL database. These are the columns involving latitude, longitude,

and address.We decided to overwrite the database as opposed to using

version control because we only want the data provided by themost recent

API call.

c. The actual code for these functions can be accessed via the public GitHub

repo provided at the end of the post.

2. Frontend

a. EC2 instance hosts web application

i. An EC2 instance is created for the web application.We used an

Ubuntu 20.04 instance with t2.micro.

ii. The client portion of the React appwas built and pushed to the

private repository, andwasmodified to run from starting the

backend server with express

iii. pm2, npm, nginx used

1. Pm2, a Production ProcessManager with a built-in Load

Balancer, is used to keep the application running indefinitely.

We use it to start our updated backend.

2. Npm is used to install react dependencies

3. Nginx is used as a proxy server that handles the routing

iv. VPC needed between RDS and EC2 instance so that the application

can query data from the database

b. React, Node.js, and express used for web application

i. Backend

1. The Node.js and express backend uses express to serve the

static build files.

2. An endpoint queries the database with a SQL query using a

mysql connection, taking a zip code as a parameter.

ii. Frontend/Client in typescript



1. When a user enters a zipcode into the input bar and submits,

the event is handled and a function that fetches from the

endpoint using the zipcode as a parameter is called.

a. The URL for the fetch changes depending on the

production environment

2. The Google maps api is given the formatted values from the

list of data returned and thenwe create themarkers, format

and concatenate the data for the info window that shows up

when themarker is clicked, create a link that takes the user to

the same location on GoogleMaps, and center themap

around the list of EV charger locations.

Running the React App locally

1. Once you have the database detailed above, check tomake sure you can access it

fromMySQLWorkbench. You should have over 60 thousand records. Youwill need

this database for the React app to run.

2. The React app can be downloaded and run on your local machine by creating a

terminal for the client and backend folder. Navigate to the server.js file in the

backend folder and update themysql connection variable with the ip address of the

server runningmysql, as well as the username, password, and name of the

database. Cd into the respective folders in two separate terminals, run npm install,

and then npm run start for both of them. Get a GoogleMaps api key and put it in a

.env file.

https://developers.google.com/maps/documentation/javascript/get-api-key


3. When the React app starts, you will see a search bar and submit button, andwhen

you enter and submit a zip code, a mapwill show up and be populated with the EV

charging station closest to you.

Try it Yourself

Below youwill find a link to our public github repowhich can be used to download our

code as well as instructions with the best way to leverage the code to create a similar

application on your own!

A user can adjust the code to run on their local machine quite easily bymaking use of an

.env file. However, since this is for a Cloud Computing course, wewill focus on how to use

the code to operate on AWS.

1. Download Code fromGitHub repo and/or clone it to alsomake sure you can run

the React app.

2. Create API keys for both for the National Renewable Energy Laboratory

(https://developer.nrel.gov/signup/) as well as GoogleMaps API.

3. Create Access Keys and Secret keys for AWS account in order to use boto3 and

access S3 buckets

4. Create S3 buckets andMySQL database by chosen names (our code points to the

same S3 bucket object each time).

5. Create Lambda functions and put in Environment variables as described in the

code for each lambda function.

6. Add in Lambda Layers via the zip files included in the GitHub repo.

https://developer.nrel.gov/signup/


7. Create Access Keys for the EC2 instance.

8. Update the environment variables in backend/server.js in order to connect to the

MySQL database.

9. Create a .env file with your GoogleMaps API key.

10.Run npm run build in the client folder.

11.Push to your updated version of the git repository.

12.Create an EC2 instance in the same VPC asMySQL database and connect the

instance to the database.

13. Install nginx, pm2, and node.js. Make sure you can see the nginx web pagewhen

you are at your instance’s ipv4 address.

14.Clone your updated git repository into the instance.

15.Update the .conf file. Check tomake sure the syntax is valid.

16.Use pm2 to start the server.js file. Check the logs using pm2 andmake sure you can

see the log saying that the port is running.

17. Install React code onto EC2 instance and update environment variables in order to

connect to theMySQL database.

Link to public GitHub repo: https://github.com/mhangsterfer24/Team-Asteroid

https://github.com/mhangsterfer24/Team-Asteroid

