
AgileCart with CI/CD Pipeline

Team Atom

Aditi Rajesh Limkar

Tejas Guduru

Sri Moulika Yetukuri

Prabodh Wesley Rondla

Abstract:

The blog post focuses on the transformative journey of implementing a Continuous Integration

and Continuous Deployment (CI/CD) pipeline, a pivotal element in modern software development.

This initiative was fueled by the knowledge and resources acquired in recent courses, with the

primary goal of automating the software delivery process. The adoption of CI/CD practices

significantly streamlined the team's workflow, leading to a more rapid, reliable, and efficient

process. This advancement was particularly beneficial for our project, a burgeoning shopping

website developed using the MERN stack, encompassing React for the front end, Express and

Node.js for the back end, and MongoDB as the database. This online shopping platform,

envisioned to evolve into a full-fledged e-commerce site, offers functionalities like adding or

removing items from the cart, checkout, payment integration with Stripe, and a comprehensive

user management system. The blog details how the CI/CD pipeline accelerated the deployment of

updates and new features, enhancing the overall efficiency and potential of our shopping app.

Architecture:

The architecture of our project's deployment pipeline starts with a developer pushing code to a

GitHub repository. A key component in this process is an active GitHub webhook, which detects

code pushes and triggers our automated pipeline. Once activated, AWS CodePipeline assumes

control, managing the deployment process stages, including code retrieval, building, testing, and

deploying. This service integrates with various AWS services for each stage. During the build

stage, the code is compiled and packaged, preparing it for the next steps. Here, Amazon S3 plays

a critical role as it stores the build artifacts, which can include compiled code, executables,

configuration files, and other necessary components for deployment. Finally, the deployment stage

involves deploying the code to an EC2 instance. This is facilitated by specific IAM roles attached

to the EC2 instance, granting it access to the S3 bucket and enabling deployment through the

CodeDeploy agent. This setup ensures a smooth and secure deployment process, integrating

various AWS services for an efficient CI/CD pipeline.

Features:

Continuous Integration and Continuous Deployment (CI/CD) are crucial practices in modern

software development that significantly enhance the efficiency and quality of a product. Here are

some of the most important things that CI/CD can do, along with an example of how they might

be used in a typical session:

• Utilizing Amazon EC2 instances for our build environment offers scalability and

flexibility. It allows for customizable configurations to match the specific requirements of

our project, such as computing power or memory.

• The pipeline automatically tests and integrates new code submissions. This ensures that

any changes made are compatible with the existing code and do not introduce new bugs.

• Our pipeline is set up for continuous deployment. Once the code passes the automated tests,

it gets deployed automatically, allowing for quick and consistent updates to your

application.

• Integrating various AWS services, such as AWS CodePipeline and S3 for artifact storage,

provides a robust and scalable infrastructure for our CI/CD pipeline. This integration

allows for efficient management of different stages of the deployment process.

• The setup likely includes monitoring mechanisms to track the health of the application and

the performance of the pipeline. This provides valuable feedback to the development team

for ongoing improvement.

• While not explicitly mentioned, incorporating security best practices within the pipeline,

especially given the use of cloud services, is crucial. This may include using secure

configurations for the EC2 instances and ensuring that the code complies with security

standards.

• The use of EC2 instances means our CI/CD environment can be scaled up or down based

on demand and can be customized to suit the specific needs of our project, offering a

balance between performance and cost.

How it works:

The CI/CD pipeline for our project leverages a combination of technologies and services, primarily

centered around AWS, to automate and streamline the software development process. Here's a

deeper dive into how each component plays its part:

Initiation with Code Push: The CI/CD process is set in motion when developers commit their

updates to the codebase, which are tracked by a GitHub repository. This action triggers an

automated sequence.

Role of GitHub Webhook: Integral to this system is the GitHub webhook. It functions as a real-

time alert mechanism, detecting when new code has been pushed to the repository and signaling

the start of the CI/CD pipeline.

AWS CodePipeline's Central Role: AWS CodePipeline is the core orchestrator of the process. It

seamlessly coordinates the flow from code retrieval to deployment, ensuring each step is executed

upon successful completion of the previous one.

Building on EC2: The compilation and preparation of the code are conducted on an Amazon EC2

instance. This instance is configured to handle the specific requirements of the build process,

offering both power and flexibility.

Amazon S3's Storage Function: Post-build, the artifacts generated – such as compiled code and

configuration files – are stored in an Amazon S3 bucket. S3 provides a secure and accessible

location for these essential components.

Automated Testing Phase: An automated testing phase is integral to the pipeline. This includes a

variety of tests designed to validate the integrity and functionality of the new code, ensuring

seamless integration with the existing codebase.

Deployment Strategy: The deployment phase involves transferring the verified code to a

production EC2 instance. This step is automated, reducing manual intervention and enhancing the

efficiency of the process.

Utilizing IAM for Secure Access: The pipeline employs AWS Identity and Access Management

(IAM) roles to manage permissions. These roles ensure secure access to necessary AWS resources

during the build and deployment stages.

Continuous Monitoring: Continuous monitoring mechanisms are in place to oversee the entire

process. This includes tracking the performance of the pipeline and the status of the deployed

application.

Manual Intervention in Rollbacks: In the current setup, reverting to a previous version of the

application in case of deployment issues is a manual process, as an automated rollback mechanism

is not implemented.

In essence, our CI/CD pipeline is a well-orchestrated sequence of events, tightly integrated with

AWS services, that automates the process of taking code from version control (GitHub) all the way

to a deployed state on an EC2 instance, with rigorous testing and quality checks along the way.

Try It Yourself:

Creating a CI/CD pipeline involves several steps, each crucial for automating and streamlining

software deployment. Here's a guide to set up this process:

Step 1:

• Select a Project and Set Up GitHub

• A project needs to be chosen for deployment. This could be an existing project or a new

one intended for development.

• The code should be hosted on a GitHub repository. For existing projects, ensure they are

already on GitHub. For new projects, a sample project can be cloned from a repository.

• Example clone command: git clone [repository-url]

Step 2:

• Create IAM Roles

• An IAM role for the EC2 instance must be created, including a policy that allows S3

access.

• Another IAM role for AWS CodeDeploy should be created and attached with the

AmazonEC2RoleforAWSCodeDeploy policy.

Step 3:

• Launch and Configure EC2 Instance

• An EC2 instance, preferably an Ubuntu Server (or any preferred OS), should be

launched.

• The IAM role created for EC2 (for S3 access) should be attached.

• Using EC2 Instance Connect or SSH, the instance needs to be accessed. Subsequent steps

include updating the server, creating a new user, and installing the AWS CodeDeploy

Agent.

Step 4:

• Create AWS CodePipeline

• A new pipeline is created in AWS CodePipeline.

• This pipeline is connected to the GitHub repository hosting the project.

Step 5:

• Establish AWS CodeBuild

• A new build project is set up in AWS CodeBuild.

• Build specifications are defined, either directly in the AWS management console or by

adding a buildspec.yml file to the project's root directory.

Step 6:

• Implement AWS CodeDeploy

• In AWS CodeDeploy, a new application and deployment group are created. The IAM role

for CodeDeploy is selected.

• The project must include an appspec.yml file in its root directory to guide AWS

CodeDeploy during the deployment process.

Steps to Run the Application

• Project Setup: The project is cloned from the GitHub repository.

• Clone command: git clone [repository-url]

• Install Dependencies: In the project directory, necessary dependencies are installed.

• Example for a Node.js project: npm install

• Local Testing (Optional): The application can be run locally for testing.

• Example for a Node.js project: npm start

• Push Changes to GitHub: Changes are made and pushed to GitHub to initiate the CI/CD

pipeline.

• Commands: git add ., git commit -m "Commit message", git push origin main

• Monitor Pipeline: AWS CodePipeline is monitored for the build, test, and deployment

process.

• Accessing the Deployed Application: The application is accessed using the public IP

address of the EC2 instance.

Debugging

• During deployment, if errors occur, the AWS console should be checked for details.

• Common issues include the absence of the CodeDeploy agent on the EC2 instance or the

agent not running properly. It's crucial to install and start the CodeDeploy agent on the

EC2 instance.

• This methodical approach facilitates the setup of a CI/CD pipeline, enabling automated

software deployment on an AWS EC2 instance.

