
SMART AI RETRIEVAL ASSISTANT

PROJECT REPORT
CS790 - CLOUD COMPUTING
FALL 2023

TEAM CLOUD9ERS
MUSTAFA KHAN
Khan72@uwm.edu
ZUHAIB SHAKEEL KHAN
zskhan@uwm.edu
PHANI RAM TEJA RAVIPATI
ravipati@uwm.edu
LAKSHMI SAI KARTHEEK SURABHI
lsurabhi@uwm.edu
TABLE OF CONTENTS

	S. NO
	CONTENT
	PAGE NO

	1.
	Abstract
	03

	2.
	Architecture
	04

	3.
	Features
	05

	4.
	How It Works
	12

	5.
	Try It Yourself
	20

ABSTRACT
The Smart AI Retrieval Assistant, nicknamed SARA, is an AI tool which would read your personal documents like a resume or class notes and answer questions from within those documents. To accomplish this, it uses 3 main components:
1. A Vector Database
2. An Embedding Function for the Vector Database
3. A LLM for generative answering

For this project, the ChromaDB Vector Database was used, OpenAI’s embedding model ‘text-embedding-ada-002’ was used for embedding and for intelligent generative answering, we use OpenAI’s ‘gpt-3.5-turbo-16K’ model.
These types of chatbots are also referred to as Retrieval Augmented Generation (RAG) chatbot. They retrieve some data as context, in our case, the vector store, they augment it as a prompt by using the retrieved information as context, and then use the prompt to generate an answer.
We provided an early concept version of SARA to students from multiple majors studying in UW-Milwaukee, and we got a positive response and a need for such product in the interest of the students.
The most positive response came from Business Majors, who had a plethora of Power point files which contained source material, and they found SARA useful in answering their questions.

ARCHITECTURE

[image: A diagram of a server

Description automatically generated]
 SARA’S AWS EC2 ARCHITECTURE

SARA is hosted on 4 AWS EC2 instances. The architecture is designed in such a way that the admins can only access the servers via a bastion host to configure them. The 4 servers are divided into 2 subnets. The public subnet has the bastion host and the webserver which the user accesses. The private subnet will have the MySQL Database and the ChromaDB vector database.
The Bastion Host
The only way to access the instances for SSH access is to do via the bastion host. Admins need to set up the bastion as a proxy server with agent forwarding, so when the admin tries to login to a server, it will be forwarded via the bastion.

The Web Server
The Webserver is the heart of the application. It contains most of the logic which is required to run the application. It contains a flask application, which contains multiple API endpoints and the front-end files, which were made using HTML, CSS, and vanilla JavaScript. It also has multiple Python scripts which handle chat functionality, Upload functionality and Database Operations.

The MySQL Server
The MySQL server instance will have tables in it which will contain the user login information, the chroma collection information and the uploaded files documentation. It helps in seamless integration of the front-end with back-end.

The Chroma Server
The chroma server is the instance which will contain the chroma vector database. This instance will store all the document vector embeddings which we have uploaded to the vector database. Like MySQL, this responds to requests in a client-server style.

FEATURES
SARA has quite a few features in it, they are the following:
1. User authentication (login and register)
2. ChromaDB collections operations.
3. Upload Documents to a ChromaDB collection.
4. Chat with files inside the ChromaDB collection.

USER AUTHENTICATION

When the user first access SARA, they are redirected to a login page. If the user exists, they can log in using their credentials, else they must register a new account.

[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]
Upon logging in, the user will be redirected to the homepage.
[image: A screenshot of a computer

Description automatically generated]

CHROMADB COLLECTIONS OPERATIONS
In the above picture, if the user clicks on collections, the user will see few collections related operations.
[image: A screenshot of a computer

Description automatically generated]
CREATE COLLECTION
The user can create a collection in ChromaDB, in which documents can be stored. A collection is like a table in MySQL.
[image: A screenshot of a computer

Description automatically generated]

LIST COLLECTION
In this feature, the user can see what collections has been created.
[image: A screenshot of a computer

Description automatically generated]
SEE DOCUMENTS IN COLLECTION
This feature shows the documents uploaded to a collection.
[image: A screenshot of a computer

Description automatically generated]

DELETE COLLECTION
This feature deletes a collection and all the documents inside of it.
[image: A screenshot of a computer

Description automatically generated]
UPLOAD DOCUMENTS TO A CHROMADB COLLECTION
This feature is used to upload file(s) to a collection. For this concept product, only .pptx and .pdf files are supported
[image: A screenshot of a computer

Description automatically generated]

For the sake of demonstration, let’s upload the below .pdf file
[image: A screenshot of a computer

Description automatically generated]

CHAT WITH FILES INSIDE THE CHROMADB COLLECTION
We finally chat with the files we uploaded to the Chroma Collection. We first select the collection we want to chat with in the sidebar, and then ask SARA questions from the documents we uploaded to it.
[image: A screenshot of a chat

Description automatically generated]
To Prove that SARA, does not utilize information from the internet and utilizes information only from within the uploaded documents, we can test it with a random question, and she will reply ‘I cannot find the answer’.

[image: A screenshot of a chat

Description automatically generated]

HOW IT WORKS
SARA has 4 main modules. They are:
1. User authentication
2. Collections
3. Upload
4. Chat
Although limited right now, these can be further expanded to provide a more stable and comprehensive experience with document management and chat functionality. The application is deployed using Flask.

USER AUTHENTICATION
The user authentication module consists of 2 features, Login and Register. No one can directly access SARA’s feature, and user must login or register first. When registering, the credentials of the user are stored in a MySQL table called ‘user’.

[image: A black screen with white text

Description automatically generated]

It has 5 rows:
1. Id – an incremental id row
2. public_id – a UUID generated at registration unique to each user.
3. name – name of the user
4. email – email of the user
5. password – password of the user which is encrypted with SHA-256.
When logging in, details are verified from the user table. To maintain session security, we make use of JWT objects. Once a user logs in, the user details are stored as flask session objects and the JWT is valid for 30 minutes or until the user logs out. This helps us maintain user separation among users.

THE COLLECTIONS MODULE
For us to fully understand how collections module works, we first need to understand Vector embeddings, how they are stored in vector databases and how ChromaDB comes into play here.

Vector Embeddings:
In natural language processing (NLP), vector embeddings are numerical representations of words or phrases in a continuous vector space. These embeddings capture semantic relationships between words and are essential for various NLP tasks, such as language modeling, machine translation, sentiment analysis, and more. The idea behind vector embeddings is to represent words in a way that preserves their meaning and relationships with other words. Traditional methods, like one-hot encoding, represent words as sparse vectors with a dimension for each unique word in the vocabulary. For our project, we have used OpenAI’s vector embeddings from the ‘text-embedding-ada-002’ model.

[image: What are Vector Embeddings | Pinecone]
Vector Embeddings

Vector Databases:
A vector database stores data points as vectors, which are numerical representations of objects. These databases excel at quick similarity searches using mathematical operations and are widely used in applications like recommendations systems, image recognition, and natural language processing. Vector databases often integrate vector embedding, learned data representations capturing intricate relationships. Embeddings encode data into meaningful numerical forms, aiding algorithms in understanding complex data relationships.
In simple terms, it is a database for our vector embeddings.

[image: A diagram of a diagram with dots and lines

Description automatically generated]
Vector Embeddings represented in multi-dimensional space.

Chroma Vector Database:
ChromaDB is an open-source vector database. We use this database to store our vector embeddings. It is also directly recommended by OpenAI as the go to vector database. ChromaDB provides the concept of collections. A collection is like a table in MySQL DB. You can perform operations on a collection inside the database and not the whole database itself. Inside the collections, we will be storing vector embeddings, which are in turn, the transformed file data.

Now that we know about vector embeddings, Vector databases and chroma, let’s talk about collections module.

CREATE COLLECTION:
When we create a collection, 2 requests are sent. The first request is sent to the chroma server, which will initialize a collection of that name inside the vector database and the second request is sent to the MySQL database, to update the ‘collections’ table in the Database. We will use this collections table later to for the ‘List Collections’ feature.

[image: A screen shot of a computer program

Description automatically generated]
This table stores the logged in users name, UUID and the collection name they created the collection with.

DELETE COLLECTION:
Delete collection works the same as create collection. We first send a request to the Chroma server to delete all the data inside that collection and that collection itself and then we send a request to the MySQL server to delete that collection name from the collection table.
[image: A diagram of a web server

Description automatically generated]
Create and Delete Collection

LIST COLLECTION:
List collections is simple, we just make a call to the MySQL table and fetch the contents of the ‘collections’ and display it for that user. We filter using UUID.

LIST DOCUMENTS:
List Documents is also simple and like the List Collection module. We just make a call to the uploaded _files table (which will be discussed in the later part of this document) and display all the documents related to a particular collection.
[image: A black square with blue arrows

Description automatically generated]
List Collection and List Documents

THE UPLOAD MODULE
SARA’s upload module currently only supports only .pptx and .pdf files, upto 100MB only. The document upload works in the following way:
· The user selects the documents which are to be uploaded with the file browser.
· Once the user selects documents and hits upload, the documents are sent to the webserver.
· The documents are then given to the Document Parsers based on their extension. If it’s a PDF file, then it’s handled by the PyPDF document parser and if it’s a PPTX file, then it is handled by the UnstructuredPowerPointLoader Document parser. Both document parsers are provided by the Langchain LLM framework.
· The Document after passing through the respective document parsers are converted, have all their text extracted and converted into a huge string.
· We split this huge string recursively into multiple smaller strings of 1000 characters each and store it in a list, we call this smaller string a ‘chunk’. This is accomplished using a Character Splitter called RecursiveCharacterTextSplitter which is also provided by Langchain.
· We then combine a chunk with a unique vector-id and some relevant metadata and prepare our vector.
· Finally, we upload the vector embeddings to chroma, and we upload the details of the uploaded file to the uploaded files table in MySQL.
[image: A screen shot of a computer program

Description automatically generated]
The ‘uploaded_files’ table has 5 rows:
1. Id – an auto-incrementing id field
2. file_name – the name of the uploaded file
3. UUID – a unique UUID for the file
4. collection_name – the name of the collection where the file was uploaded.
5. timestamp - the time at which the file was uploaded.

[image: A diagram of a diagram

Description automatically generated]
The Upload Process

THE CHAT MODULE
The Chat module is used to communicate with the documents uploaded in the collection. It works in the following way:
· The user first selects the collection to ask the questions from.
· The user then asks a question, which is sent to the webserver.
· The webserver then converts that question into a vector embedding using “text-embedding-ada-002” model and sends it to chroma server.
· Chroma receives the embedded question and performs a similarity search inside that collection.
· In SARA, we use cosine distance metric for similarity search, and we return the top 5 most relevant chunks, related to that question.

·
We use these chunks as context and stitch a prompt by combining the provided question and context from chroma. Click on the below file to see an example prompt.

· We then send the prompt to OpenAI’s ‘gpt-3.5-turbo-16k’ API, which intelligently forms a response and sends it back, which we display back to the user in the chat screen.

[image: A diagram of a web server

Description automatically generated]

TRY IT YOURSELF.
SARA has 2 versions which can be tried:
1. SARA CLI : a local CLI application to be run on local machine.
2. SARA WEB-UI – A structured web application to be deployed on multiple servers.
It can be accessed at MUSTAFAKHAN1999/SARA: Smart AI Retrieval Assistant (github.com)
The Web and CLI applications are separated into two branches.
SARA is also hosted on https://www.cloud9ers.cloud
(If the website is unreachable, it might be because the instances are turned off. A quick email to Khan72@uwm.edu can have them turned on).

SARA CLI:
To run SARA CLI, you need the following:
· Python v3.8.10 only
· OpenAI API key
SARA CLI has no authentication and just runs directly with the features.

SARA WEB-UI:
To run SARA WEB-UI, you need to first provision 4 AWS instances according to the above project architecture.
1. Web Server – t2.medium
2. Bastion – t2.micro
3. MySQL – t2.medium
4. Chroma – t3.small (☁️ Deployment | Chroma (trychroma.com))

The instructions for installation will be present in the readme.md file in the repository.
2

image1.png
USER

PUBLIC SUBNET

PRIVATE SUBNET

BASTION

SSH

HOST

WEB SERVER

DB OPERATIONS

image2.png
® @ 0O DO won

< C o] ‘cloudders.cloud

Password:

image3.png
O © O [Reger

< C o] ‘cloudders.cloud

Register

Username:

Password:

image4.png
O @ O [SmartAlRetrieverAssistant AT X+

< C 06 cloudders.cloud

Smart Al Retriever Assistant (SARA) m Home Logout

Smart Al Retrieval Assistant (SARA)

Hello User: admin

Collections Upload

image5.png
O @ O [SmartAlRetrieverAssistant AT X+

< C 06 cloudders.cloud

Smart Al Retriever Assistant (SARA) m Home Logout

Smart Al Retriever Assistant (SARA)

List Collections Create Collection [BEECROLIEETLE See Documents in Collection

image6.png
[e] D

&< O 5] ‘cloud9

([g] [Create Collection

rs.cloud,

Smart Al Retriever Assistant (SARA) VS condoescougsse Home Logout

fully created the collection

Enter Collection Name:

report-demonstration-collection

image7.png
@O @ DO [CreateColection

< C o] ‘cloudders.cloud

Smart Al Retriever Assistant (SARA) RYELT Home Logout

to see the collections

report-demonstration-collection, mk-textbook

image8.png
@® @ O [LstDocuments

< C o] ‘cloudders.cloud

Smart Al Retriever Assistant (SARA) RYELT Home Logout

List Documents

Select Collection:

mk-textbook v

Documents in mk-textbook:
1. concurrent_programming_in_java_design_principles_and_pattern.pdf

image9.png
@O @ DO [deleteColection

< C o] ‘cloudders.cloud

Smart Al Retriever Assistant (SARA) RYELT Home Logout

Delete Collection

Select Collection:

mk-textbook

Delete Collection

Collection mk-textbook deleted
successfully, along with its documents

D Feels colder
Now

00:14

5) & 2) b
Q Search x OB 00003

image10.png
O @ DO [FieUpoad X @ report-demo.pdf

< C o] ‘cloudders.cloud

Home Logout

Smart Al Retriever Assistant (SARA) BYELT

File Upload

Select Collection:

report-demonstration-collection

Select Files (.pptx or .pdf, Max 100MB):

report-demo.pdf

report-demo.pdf

Upload

image11.png
THE COURSE INSTRUCTOR FOR
CS790 IS PROFESSOR MIKE

DENZIEN.

HIS TEACHING ASSISTANTS ARE
ROHIT AND PRANAY.

image12.png
. @ O [chatoot
< O (& https://cloud9ers.cloud/chat

Select Collection:

lection

X

SARA

Askme anything from your Documents!

@ Hil How can | assist you today?
023
Who are you and what can you do? O
023

@ I'am SARA, which stands for Smart Al Retrieval Agent. | am an Al chatbot designed to assist and provide information based

on the context provided. However, | cannot find an answer in the provided context.

Who is the course instructor for CS790? O
024

023

@ The course instructor for CS790 is Professor Mike Denzien,
024
what are the names of his TA's? O
024
@ The names of his TAs are Rohit and Pranay.
024

Type your question 4

image13.png
® o
< C

MO [Chatbot

() hitps://cloud9ers.cloud/chat

Select Collection:

X

SARA

Askme anything from your Documents!

am an

Retri gen
nnot find an

hatbot designed to as: rmation based

wer in the provided conte;

Who is the course instructor for CS790? O
024

023

@ The course instructor for CS790 is Professor Mike Denzien,

024

what are the names of his TA's? O
024
@ The names of his TAs are Rohit and Pranay.
024
Who is Tom Cruise? O
026

@ I cannot find the answer in the provided context.

026

Type your question 4

image14.png
Field	Type	Null	Key	Default	Extra
id	int	NO	PRI	NULL	auto_increment
public_id	varchar(56)	YES	UNI	NULL	
name	varchar(100)	YES	NuLL		
email	varchar(70)	YES	UNI	NULL	
password	varchar(255)	YES	noe		

rows in set (0.00 sec)

image15.png
Object 1

Object 2

Object 3

Set of Objects

Embedding Model

0.6

0.3

0.1

0.8

0.5

0.3

0.4

0.2

0.9

Objects as Vectors

image16.png
.
° .
: 0
° °
¢ .
. .
° p . %o
’ [)
® Wolf < o)
¢ .
' % ° Banana
° . . 2
¢ . .
Cat L . < S . sk .
.

image17.png
mysql> describe collections;

Field	Type	Null	Key	Default	Extra
name	text	YES		noe	
uuid	text	YES		noe	
collection_name	text	VES	Ine		

3 rows in set (.00 sec)

image18.png
CHROMA
SERVER
CREATE

. COLLECTION

. Web Server
DELETE

USER COLLECTION

MysQL
SERVER

image19.png
LIST

MySQLe/ SERVER
COLLECTIONS ySQLY

Web Server COLLECTIONS

LIST UPLOADED_FILES
DOCUMENTS

image20.png
mysql> describe uploaded_files;

Field	Type	Null	Key	Default	Extra
id	int	N0	PRI	NULL	auto_increment
file_name	text	ves		nuLL	
uuid	text	ves		nuLL	
collection_name	text	ves		nuLL	
timestamp	timestamp	YES		CURRENT_TIMESTAMP	DEFAULT_GENERATED

rows in set (0.00

sec)

image21.png
Document(s)

L —_—
LT

Document
Chunks

META-DAT/

CHROMA
SERVER

VECTOR

MySQL
SERVER

image22.emf
prompt example.txt

prompt example.txt
'Answer the questions based on the given context,

Question:', 'what is concurrent programming?’,

 'Context:’,

1. A more precise, though not very interesting definition of concurrent programming can be phrased

operationally: A Java virtual machine and its underlying operating system (OS) provide mappings from apparent simultaneity to physical parallelism (via multiple CPUs), or lack thereof, by allowing

independent activities to proceed in parallel wh en possible and desirable, and otherwise by time-

sharing. Concurrent programming consists of usin g programming constructs that are mapped in this

way. Concurrent programming in the Java programming language entails using Java programming

2. 1.2.1 Concurrency

Like most computing terms, "concurrency" is tricky to pin down. Informally, a concurrent program is one that does more than one thing at a time. For example, a web browser may be simultaneously

performing an HTTP GET request to get an HTML page, playing an audio clip, displaying the number of bytes received of some image, and engaging in an advisory dialog with a user. However, this

simultaneity is sometimes an illusion. On some computer systems these different activities might

indeed be performed by different CPUs.

But on other systems they are all performed by a single time-shared CPU that switches among different activities quickly enough that they appear to be simultaneous,

 or at least nondeterministically interleaved, to human observers.A more precise, though not very interesting definition of concurrent programming can be phrased

3. Burns, Alan, and Geoff Davis. Concurrent Programming , Addison-Wesley, 1993.

Bustard, David, John Elder, and Jim Welsh. Concurrent Program Structures , Prentice Hall, 1988.

Schneider, Fred. On Concurrent Programming , Springer-Verlag, 1997.

The concurrency constructs found in the Java programming language have their roots in similar

constructs first described by C. A. R. Hoare and Per Brinch Hansen. See papers by them and others in following collections:

Dahl, Ole-Johan, Edsger Dijkstra , and C. A. R. Hoare (eds.). Structured Programming , Academic

Press, 1972.

Gehani, Narain, and Andrew McGettrick (eds.). Concurrent Programming , Addison-Wesley, 1988.

A comparative survey of how some of these constructs are defined and supported across different

languages and systems may be found in:

Buhr, Peter, Michel Fortier, and Michael Coffin. "Monitor Classification", ACM Computing Surveys ,

1995.

4. the 1970s. And concurrency played no practical ro le in the wide-scale embrace of OO programming

that began in the 1980s. But interest in OO concurrency stayed alive in research laboratories and

advanced development groups, and has re-emerged as an essential aspect of programming in part due

to the popularity and ubiquity of the Java platform.

Concurrent OO programming shares most features with programming of any kind. But it differs in

critical ways from the kinds of programming you may be most familiar with, as discussed below.

1.2.3.1 Sequential OO programming

Concurrent OO programs are often structured using the same programming techniques and design

patterns as sequential OO programs (see for example § 1.4

). But they are intrinsically more complex.

When more than one activity can occur at a time, program execution is necessarily nondeterministic.

Code may execute in surprising orders — any order that is not explicitly ruled out is allowed (see §

5. The degree of programmer control over these mappings is one distinction separating many forms of

parallel programming from concurrent programming. Classic parallel programming involves explicit

design steps to map threads, tasks, or processes, as well as data, to physical processors and their local

stores. Concurrent programming leaves most mapping decisions to the JVM (and the underlying OS).

This enhances portability, at the expense of needing to accommodate differences in the quality of implementation of these mappings.

Time-sharing is accomplished by applying the same kind of mapping strategy to threads themselves:

Representations of

Thread objects are maintained, and a scheduler arranges context switches in

which the CPU state corresponding to one thread is saved in its associated storage representation and

restored from another.

Several further refinements and extensions of such models and mappings are possible. For example,

"if you cannot find an answer, reply with 'I Cannot Find the answer in the provided Texts."

image23.png
ASK Question Similarity Search

_— _—
WEB SERVER CHROMA
— SERVER
—
GPT RESPONSE Context
USER
H
w 2
o) £
2 s
o o
2 +
@ §
© 2
Il 8
5 s
o

G

OpenAl

