
Project Report

Team - Kanyarasi

Deployment of a Food Delivery System

Using IaaS and PaaS

A PROJECT REPORT

Submitted by:

Giridhar Varma Chintalapati

Anurag Bojja

Nikhil Gundamaraju

Teja Sreekar Dara

In partial fulfilment of the course

CS 790 – Cloud Computing

By

Prof. Micheal S. Denizen

UNIVERSITY OF WISCONSIN, MILWAUKEE

December 2023

Title: Deployment of a Food Ordering and Delivery System Using IaaS and

PaaS

Project Report

Team - Kanyarasi

Abstract:

This abstract presents a comprehensive framework for deploying a basic food delivery system

on the cloud, leveraging Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)

offerings. The traditional food delivery industry is evolving rapidly, and embracing cloud

computing can enhance scalability, flexibility, and efficiency. Our proposed system harnesses

the power of IaaS for infrastructure provisioning and PaaS for application development and

deployment.

The IaaS layer involves the utilization of cloud infrastructure services such as AWS ec2

instance and networking to establish a scalable and resilient foundation. This allows the system

to dynamically adapt to varying workloads and ensures high availability. Meanwhile, the PaaS

layer streamlines application development and deployment, enabling developers to focus on

building features rather than managing the underlying infrastructure.

Key components of the system include user interfaces for customers and delivery personnel, a

centralized order management system, real-time tracking mechanisms. This is developed using

DJANGO. Both deployments are connected to single database instance, so the real time

changes happened in one instance automatically reflects into the other instance which helps in

providing scalability.

The cloud-based food delivery system enhances scalability, allowing the platform to handle

varying demand seamlessly. Additionally, the deployment on the cloud ensures geographical

flexibility, enabling users to access the system from anywhere with an internet connection. The

inherent features of IaaS and PaaS, such as automated scaling and managed services, contribute

to operational efficiency and reduce the overall cost of ownership.

In conclusion, our proposed deployment model combines the strengths of IaaS and PaaS to

create a robust and scalable cloud-based food delivery system. This approach not only

modernizes the food delivery industry but also provides a blueprint for leveraging cloud

computing in other sectors requiring scalable and efficient solutions.

Project Report

Team - Kanyarasi

Trivial Architecture used:

System architecture used for Both instances.

The functionality is same for both deployed instances but there are minute changes done for

the deployment process.

For deploying ec2 instance we have .env file where we can save the secret key and database

details

Project Report

Team - Kanyarasi

We overcame the errors that occurred during the deployment by directly hardcoding the

database details into the system.

Deployment IN EC2 Instance:

Launch EC2 Instance:

• Log in to your AWS Management Console.

• Go to EC2 Dashboard and launch a new instance.

• Choose an appropriate AMI (Amazon Machine Image), like Ubuntu Server.

• Select the instance type (e.g., t2. medium).

• Use Key pairs generated before using PuTTYgen

• Configure instance details, for storage we use 8, and tags as needed.

• Configure a Security Group to allow traffic on ports 80 (HTTP), 443 (HTTPS), and

22 (SSH).

• Review and launch the instance.

• To allow the public internet access we allowed ‘port 443’ in inbound rules.

• Created an elastic IP for the instance and added the elastic IP to IONOS

• Using elastic IP established a connection using BITVISE SFTP

Project Report

Team - Kanyarasi

• We deployed whole DJANGO project using SFTP.

• Connect through SFTP terminal.

• Navigate to elastic Ips and create elastic Ip using your instance.

run sudo apt update

 sudo apt upgrade

NGINX Installation:

• Install NGINX to terminal and verify using http://<ipaddress>

• After successful installation there would be message like welcome to nginx

navigate to project location in terminal

File Repository:

• Navigate to project file repository uploaded

<cd/home/ubuntu/django _project>

directory is according to our instances it may vary when user tries to replicate

process

Environment Setup for our project:

• To install python3, pip and virtuval environment

run sudo apt-get install

python3 python3-pip

python3-venv

• Create virtual environment, run python3 -m venv venv and activate using source

venv/bin/activate

Now, we need to install software that required for our project.

To install run pip install -r requirements.txt

Project Report

Team - Kanyarasi

Create Azure MYSQL server:

In the Azure Portal, search for MySQL and then select Azure Database for MySQL flexible

servers. Click on Create Flexible Serve

• Select resource group, Enter the name for the database.

• For authentication method select MySQL authentication (username, password)

• For networking tab to allow public access for MySQL service add firewall rule

0.0.0.0-255.255.255.255

• Click review and create.

• After successful creation database, connect database to MySQL workbench.

• Using host and username (username used before)

• Create database cs790app in work bench using.

‘Create database cs790app;’

Database Setup:

• Configure the DATABASES setting in settings.py accordingly.

• Navigate to your BITVISE console.

Run python manage.py makemigration kanyarasi

Python manage.py migrate

• After successful execution of the above commands, you can see the migrations file

in kanyarasi folder

• Navigate Mysql workbench

• Run use cs790app;

show tables

• Successful execution of the above command the populated tables can be viewed.

Project Report

Team - Kanyarasi

Configure Nginx to Proxy to Gunicorn :

• If you didn’t install gunicorn yet, run “pip install gunicorn” to install (make sure

you are in virtual environments)

Create a Gunicorn systemd service file.

• sudo nano /etc/systemd/system/gunicorn.service

[Unit]

Description=gunicorn daemon for Django Project

After=network.target

[Service]

User=ubuntu

Group=ubuntu

WorkingDirectory=/home/ubuntu/django_project

ExecStart=/home/ubuntu/django_project/myenv/bin/gunicorn --workers 3

django_project.wsgi:application

Restart=always

[Install]

WantedBy=multi-user.target

Test Gunicorn Serving our project

run gunicorn --workers 3 django_project.wsgi:application (here Django_project is my project

folder)

you will get similar below

[2023-12-17 12:24:17 +0000] [23088] [INFO] Starting gunicorn 21.2.0

[2023-12-17 12:24:17 +0000] [23088] [INFO] Listening at: http://127.0.0.1:8000 (23088)

[2023-12-17 12:24:17 +0000] [23088] [INFO] Using worker: sync

[2023-12-17 12:24:17 +0000] [23090] [INFO] Booting worker with pid: 23090

[2023-12-17 12:24:17 +0000] [23091] [INFO] Booting worker with pid: 23091

[2023-12-17 12:24:17 +0000] [23092] [INFO] Booting worker with pid: 23092

Now we configure Nginx

 run sudo nano /etc/nginx/sites-available/Django_project

this will create Nginx configuration file of our project.

copy and paste below code:

server {

 server_name anuragbojja.com www.anuragbojja.com;

 location = /favicon.ico { access_log off; log_not_found off; }

 location /static/ {

http://www.anuragbojja.com/

Project Report

Team - Kanyarasi

 root /home/ubuntu/django_project; #this is my project static folder

 }

 location / {

 proxy_pass http://127.0.0.1:8000;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

Now we enable the nginx

run sudo ln -s /etc/nginx/sites-available/Django_project /etc/nginx/sites-enabled/

remove default file sudo rm /etc/nginx/sites-enabled/default

Here Django_project is my file I created above for nginx configure.

Check your Nginx configuration for syntax errors:

Run sudo nginx -t

Now, we restart nginx using sudo systemctl restart nginx

And also, restart gunicorn using sudo systemctl restart gunicorn

Now navigate to your domain mine is www.anuragbojja.com here you can see it’s not secure

now we need to secure our domain using certbot

• sudo apt update

• sudo apt install certbot python3-certbot-nginx

Use Certbot to obtain a TLS certificate for your domain. Replace anuragbojja.com &

www.anuragbojja.com with your actual domain name:

• sudo certbot --nginx -d anuragbojja.com -d www.anuragbojja.com

• sudo systemctl reload nginx

now, when you navigate to you domain mine is www.anuragbojja.com , I can see it is secure.

http://www.anuragbojja.com/

Project Report

Team - Kanyarasi

If you ever face error

try to check your gunicorn status, if it not in running status run

• sudo systemctl start gunicorn

• sudo systemctl enable gunicorn

try to check you nginx status, if it’s not in running status run

• sudo systemctl restart nginx

Deployment IN Azure WebApp:

Create Webapp:

Navigate to azure console, search for App service, click create and create webapp

• select resources group

• enter name for your webapp, for publish code, for running stack python 3.11(I prefer

python 3.11), for os leave as linux

• leave everything default and click review&create.

You can see below page

Project Report

Team - Kanyarasi

Push code to you GitHub repository:

Navigate to you code folder (I prefer vs code)

Create empty git repository in your github

In terminal enter

• verify if you git using “git”, to install git I not You will need a Git command line

client. Download and install it from: https://git-scm.com/book/en/v2/Getting-Started-

Installing-Git

• git init

• git add .

• git status (here you can see all the files you are pushing to your git repository)

• git commit -m "First commit "

• now add all the file to your git using similar to this “git remote add origin

https://github.com/AnuragBojja/test.git”

• now push your code using “ git push -u origin master ”

when you navigate to your GitHub repository you can see your entire project files

like

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/AnuragBojja/test.git

Project Report

Team - Kanyarasi

Now navigate to web app you created before and click deployment center.

Here you can connect your GitHub.

• Source as github

• Authorize your GitHub.

• Add your github Repository.

• Branch as master

• Click save

It start developing your code into azure webapp after successful deployment, navigate to

overview click default domain look like “kanyarasi-team.azurewebsites.net”.

And you can see secure azure page with our project

Project Report

Team - Kanyarasi

To add custom domain to your webapp

• In the Azure portal, navigate to your app's management page.

• In the left menu for your app, select Custom domains.

• Select Add custom domain.

• For Domain provider, select All other domain services to configure a third-party

domain.

• For TLS/SSL certificate, select App Service Managed Certificate if your app is in

Basic tier or higher. If you want to remain in Shared tier, or if you want to use your

own certificate, select Add certificate later.

• For Domain, specify a fully qualified domain name you want based on the domain

you own. The Hostname record type box defaults to the recommended DNS record to

use, depending on whether the domain is a root domain (like mine is

anuragbojja.com)

• Copy CNAME and TXT add them to your domain DNS settings

• Click validate and add

For more information https://learn.microsoft.com/en-us/azure/app-service/app-service-

web-tutorial-custom-domain?tabs=root%2Cazurecli#1-configure-a-custom-domain

Code for Webapp deployment: https://github.com/AnuragBojja/kanyarasi-team-

webapp

Code for AWS EC2 Instance: https://github.com/AnuragBojja/kanyarasi-Ubuntu-

Deployment

https://learn.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain?tabs=root%2Cazurecli#1-configure-a-custom-domain
https://learn.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain?tabs=root%2Cazurecli#1-configure-a-custom-domain
https://github.com/AnuragBojja/kanyarasi-team-webapp
https://github.com/AnuragBojja/kanyarasi-team-webapp
https://github.com/AnuragBojja/kanyarasi-Ubuntu-Deployment
https://github.com/AnuragBojja/kanyarasi-Ubuntu-Deployment

Project Report

Team - Kanyarasi

Trivial Application flow diagram:

• The developed application flow would be like shown in the above capture.

Both the deployments have same database “azure MySql Server”,

• This is the page for the restaurant management where they can add menu and check

for orders and view the menu.

Project Report

Team - Kanyarasi

• The restaurant management can add the item from the add menu item catalogue where

he can add the image for the food item and name it and he can price it according to

the feasibility of the restaurant.

• This would be the item catalogue where the items of the restaurant can be seen.

Project Report

Team - Kanyarasi

• This would be the item catalogue where end user can add the item of his choice to

order.

• As we can see in the above the user has ordered a burger and added the delivery

address where the item needs to be delived

Project Report

Team - Kanyarasi

• Upon successful completion of placing the order the end user can see that order has

successfully placed and the order details

• Once the order has been placed the restaurant can view in their catalogue and check

the order that has been received.

Project Report

Team - Kanyarasi

• And once the order has been prepared the restaurant updates that it is done and the

captain(delivery agent) can see in his catalogue that there is a order that needs to be

delivered and in there the captain can see the address details that the food needs to be

delivered.

• The user can check the order status by logging into his dashboard like the order is

delivered or not and also he can the previous orders.

